A block inverse-free preconditioned Krylov subspace method for symmetric generalized eigenvalue problems

نویسندگان

  • Patrick Quillen
  • Qiang Ye
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deflation by Restriction for the Inverse-free Preconditioned Krylov Subspace Method

A deflation by restriction scheme is developed for the inverse-free preconditioned Krylov subspace method for computing a few extreme eigenvalues of the definite symmetric generalized eigenvalue problem Ax = λBx. The convergence theory for the inverse-free preconditioned Krylov subspace method is generalized to include this deflation scheme and numerical examples are presented to demonstrate th...

متن کامل

An Inverse Free Preconditioned Krylov Subspace Method for Symmetric Generalized Eigenvalue Problems

In this paper, we present an inverse free Krylov subspace method for nding some extreme eigenvalues of the symmetric de nite generalized eigenvalue problem Ax = Bx. The basic method takes a form of inner-outer iterations and involves no inversion of B or any shift-and-invert matrix A 0B. A convergence analysis is presented that leads to a preconditioning scheme for accelerating convergence thro...

متن کامل

A New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems

In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.

متن کامل

Preconditioned Iterative Methods for Linear Systems, Eigenvalue and Singular Value Problems

In the present dissertation we consider three crucial problems of numerical linear algebra: solution of a linear system, an eigenvalue, and a singular value problem. We focus on the solution methods which are iterative by their nature, matrix-free, preconditioned and require a fixed amount of computational work per iteration. In particular, this manuscript aims to contribute to the areas of res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 233  شماره 

صفحات  -

تاریخ انتشار 2010